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Université Libre de Bruxelles and International Solvay Institutes,

Campus de la Plaine, CP 231, B-1050 Bruxelles, Belgique

E-mail: frank.ferrari@ulb.ac.be

Abstract: We solve a generalization of ordinary N = 1 super Yang-Mills theory with

gauge group U(N) and an adjoint chiral multiplet X for which we turn on both an arbi-

trary tree-level superpotential term
∫

d2θ TrW (X) and an arbitrary field-dependent gauge

kinetic term
∫

d2θ Tr V (X)W αWα. When W = 0, the model reduces to the extended

Seiberg-Witten theory recently studied by Marshakov and Nekrasov. We use two differ-

ent points of view: a “macroscopic” approach, using generalized anomaly equations, the

Dijkgraaf-Vafa matrix model and the glueball superpotential; and the recently proposed

“microscopic” approach, using Nekrasov’s sum over colored partitions and the quantum

microscopic superpotential. The two formalisms are based on completely different sets of

variables and statistical ensembles. Yet it is shown that they yield precisely the same gauge

theory correlators. This beautiful mathematical equivalence is a facet of the open/closed

string duality. A full microscopic derivation of the non-perturbative N = 1 gauge dynamics

follows.

Keywords: Supersymmetric gauge theory, Gauge-gravity correspondence, Duality in

Gauge Field Theories, Nonperturbative Effects.

c© SISSA 2007 http://jhep.sissa.it/archive/papers/jhep112007001/jhep112007001.pdf

mailto:frank.ferrari@ulb.ac.be
http://jhep.sissa.it/stdsearch
http://jhep.sissa.it/stdsearch


J
H
E
P
1
1
(
2
0
0
7
)
0
0
1

Contents

1. General presentation 1

1.1 The model 2

1.2 The macroscopic formalism 4

1.3 The microscopic formalism 6

1.4 Outline of the paper 9

2. The macroscopic formalism 10

2.1 The anomaly equations, Smac and the matrix model 10

2.2 The glueball superpotential and Rmac 13

2.2.1 Consistency with the anomaly equations and Rmac 14

2.2.2 Consistency with the U(1)R symmetry 17

2.3 The macroscopic quantum equations of motion 18

2.3.1 On the consistency of the chiral ring 18

2.3.2 The equations of motion 19

2.3.3 The U(1)R symmetry revisited 20

2.4 The solution in the macroscopic formalism 21

3. The microscopic formalism 21

3.1 Marshakov-Nekrasov and Rmic 22

3.2 The generating function Smic 23

3.3 The microscopic quantum equations of motion 27

3.4 The microscopic derivation of the anomaly equations 30

3.4.1 The action of Ln 31

3.4.2 The action of Jn 31

3.5 The solution in the microscopic formalism 32

4. Conclusions 32

A. Generalized Riemann bilinear relations 35

B. The solution in the rank one case 38

1. General presentation

In two recent papers [1, 2], the author and collaborators have proposed a general micro-

scopic approach to the solution of N = 1 super Yang-Mills theories. In [1], it was explained

how to apply Nekrasov’s instanton technology [3] to N = 1, including in the strongly cou-

pled vacua. The formalism is based on a microscopic quantum superpotential Wmic whose
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saddle points are in one-to-one correspondence with the full set of quantum vacua of the

theory. In [2], explicit calculations were made up to two instantons, and it was shown that

the results agree to this order with the predictions made using a totally different formalism

based on the Dijkgraaf-Vafa matrix model and glueball superpotential [4, 5]. The main

purpose of the present work is to present a proof of the exact equivalence between the two

formalisms. This yields a full microscopic derivation of the exact results in N = 1 gauge

theories, including a non-perturbative justification of the Dijkgraaf-Vafa matrix model, the

generalized anomaly equations and the Dijkgraaf-Vafa glueball superpotential.

1.1 The model

We shall focus, as in [1, 2], on the N = 1 theory with gauge group U(N) and one adjoint

chiral superfield X. The basic chiral operators are given by [5]1

uk = Tr Xk , (1.1)

vk = − 1

16π2
Tr W αWαXk , (1.2)

where W α is the vector chiral superfield which contains the gauge field and whose lowest

component is the gluino field. Our main goal is to compute the gauge theory expectation

values of the above operators, that are conveniently encoded in the generating functions

R(z) =
∑

k≥0

〈uk〉
zk+1

, (1.3)

S(z) =
∑

k≥0

〈vk〉
zk+1

· (1.4)

The theory is usually studied with an arbitrary tree-level superpotential Tr W (X) for the

field X, which amounts to introducing arbitrary couplings to the scalar operators (1.1).

For our purposes, it is extremely natural to introduce arbitrary couplings to the generalized

glueball operators (1.2) as well. The tree-level lagrangian that we consider is thus of the

form

L =
1

4π
Im

∫

d2θ Tr
(

τ(X)W αWα

)

+ 2N Re

∫

d2θ Tr W (X) , (1.5)

where τ(X) and W (X) are arbitrary polynomials in X. Instead of the field-dependent

coupling τ , it is convenient to work with the polynomial V defined by

NV (z) = 2iπτ(z) . (1.6)

The lagrangian can then be written as

L = 2N Re

∫

d2θ W (1.7)

1One can also introduce the chiral operators Tr W
α
X

k, but they have zero expectation values due

to Lorentz invariance. Non-trivial expectation values could be obtained by turning on Lorentz violating

couplings t
α
k Tr WαX

k in the tree-level superpotential. The resulting model can be studied straightforwardly

using our methods, but we shall not do it here for the sake of simplicity.
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with

W = − 1

16π2
Tr V (X)W αWα + Tr W (X) . (1.8)

Using the parametrization

V (z) = λ−1 +

dV
∑

k=0

λk

k + 1
zk+1 , (1.9)

W (z) =

dW
∑

k=0

gk

k + 1
zk+1 , (1.10)

where the degrees dV and dW can be arbitrary, the superpotential (1.8) takes the form

W = λ−1v0 +
∑

k≥0

λk

k + 1
vk+1 +

∑

k≥0

gk

k + 1
uk+1 . (1.11)

It is also useful to introduce a polynomial

t(z) =
∑

k≥1

tk
k + 1

zk+1 (1.12)

satisfying the relation

t′′(z) = NV (z) = 2iπτ(z) . (1.13)

We shall use t(z) or V (z) interchangeably according to convenience, with

t1 = Nλ−1 , tk =
Nλk−2

k(k − 1)
for k ≥ 2 . (1.14)

Let us note that the usual instanton factor is given by

q = et1 = eNλ−1 . (1.15)

The model (1.5) has useful U(1)A and U(1)R global symmetries. The charges of the super-

space coordinates θα, of the various fields and couplings, and of any superpotential w one

may wish to consider are given in the following table,

θ W α X uk vk gk λk, k ≥ 0 q w

U(1)A 0 0 1 k k −k − 1 −k − 1 2N 0

U(1)R 1 1 0 0 2 2 0 0 2 .

(1.16)

When W = 0, the theory (1.5) has N = 2 supersymmetry, with tree-level prepotential

FN=2(X) = t(X) . (1.17)

This “extended” Seiberg-Witten theory was studied recently from the microscopic point

of view by Marshakov and Nekrasov in [6], and their results will be particularly useful for

us. When W is turned on, the N = 2 moduli space is lifted, and the theory has a discrete

set of vacua. Classically, the vacua are labeled by the numbers Ni of eigenvalues of X that
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sit at given critical points of W . In such vacua, the gauge group is broken from U(N)

down to U(N1) × · · · × U(NdW
). The rank of the vacuum is defined to be the number of

non-zero integers Ni. Since a mass gap is created in each non-abelian unbroken factor, it

coincides with the rank of the low energy gauge group U(1)r. Moreover, chiral symmetry

breaking generates an Ni-fold degeneracy for each U(Ni) factor. This will be explicitly

demonstrated later. The quantum vacua corresponding to the integers Ni are thus labeled

as |Ni, ki〉 with 0 ≤ ki ≤ Ni − 1. Moreover, when dV ≥ 1, we may find that new vacua

appear at the quantum level. These vacua go to infinity in field space in the classical limit.

The solution of the model (1.5) can be found using two a priori completely different

approaches. One approach is motivated by the closed string dual of the gauge theory and is

natural from the long-distance, macroscopic point of view. It is based on the Dijkgraaf-Vafa

matrix model and the use of the glueball superpotential [4], or equivalently on the geometric

transition picture and the flux superpotential in the dual closed string background [7]. We

call this approach the macroscopic formalism. It is very difficult to justify this formalism

from first principles. The second approach amounts to computing directly the relevant

gauge theory path integrals. It is based on Nekrasov’s sums over colored partitions [3]

and the microscopic quantum superpotential [1]. This is natural from the short-distance

point of view and thus we call this approach the microscopic formalism. The microscopic

formalism provides rigorous, first-principle derivations of the non-perturbative gauge theory

dynamics.

The goal of the present paper is to prove the equivalence between the two formalisms.

Since the microscopic and macroscopic set-ups are equivalent to the open and closed string

descriptions respectively, the mathematical equivalence we are going to derive is a beautiful

facet of the open/closed string duality, in a rare case where a complete understanding can

be achieved.

Let us now present briefly the main ingredients of the two formalisms. Full details and

justifications will be given in later sections.

Notation. In the following, when we have an indexed family of parameters, we use a

non-indexed boldface letter to represent all the parameters at once. For example g denotes

all the gk, and t all the tk.

1.2 The macroscopic formalism

In the macroscopic formalism, the basic, natural variables are the generalized glueball

operators (1.2). Their expectation values for fixed gluino condensates si in the unbroken

factors of the gauge group are given in terms of averages over the statistical ensemble of a

random hermitian matrix M of size n × n as

vk, mac(s,g, ε) = Nε
〈〈

s
∣

∣Tr Xk
∣

∣s
〉〉

ε
=

Nε

Zmac

∫

dµM
mac Tr Mk , (1.18)

Zmac(s,g, ε) =

∫

dµM
mac = exp

Fmac(s,g, ε)

ε2
· (1.19)
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The “macroscopic” measure is given in terms of the components of the matrix M and the

tree-level superpotential W ,

dµM
mac =

n
∏

I=1

dMII

∏

1≤I<J≤n

dReMIJ dImMIJ exp

(

− 1

ε
TrW (M)

)

. (1.20)

The parameter ε, which can be interpreted as the strength of some particular supergravity

background [8], is related to the size of the matrix M ,

ε =
s

n
, (1.21)

with

s =
∑

i

si . (1.22)

The precise prescription to compute (1.18) is as follows. If one wishes to describe a rank

r vacuum, then one must expand the matrix integral around the corresponding classical

saddle point |N1, . . . , Nr〉, by putting ni = si/ε eigenvalues of the matrix M at the critical

point of W corresponding to the integer Ni. One then considers the large n, or small ε,

’t Hooft’s genus expansion.

From (1.18), (1.19) and (1.20), we obtain immediately relations valid for any ε,

vk, mac(s,g, ε) = −Nk
∂Fmac

∂gk−1

, k ≥ 1 . (1.23)

These relations are the macroscopic analogue of the Matone’s relations [9], see (1.48) and

below.

From (1.18), we can get the generating function

Smac(z; s,g, ε) =
∑

k≥0

vk, mac(s,g, ε)

zk+1
· (1.24)

Most relevant to us will be the planar ε → 0 limit

vk, mac(s,g) = lim
ε→0

vk, mac(s,g, ε) , (1.25)

Smac(z; s,g) = lim
ε→0

Smac(z; s,g, ε) . (1.26)

Note the following important feature: the function Smac does not depend on the parameters

t that enter the tree-level lagrangian (1.5).

The next step is to introduce the macroscopic quantum superpotential Wmac, which is

nothing but the glueball superpotential. In terms of the “macroscopic” one-form

λmac = Smac(z; s,g) dz , (1.27)

it is given by

Wmac(s,g, t) =
1

2iπ

∮

α
V λmac −

∑

i

Ni
∂Fmac

∂si

, (1.28)
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where α will always denote a large contour at infinity in the z-plane. The expectation

values of the operators (1.1) are given by

uk, mac(s,g, t) = k
∂Wmac

gk−1

, (1.29)

with associated generating function

Rmac(z; s,g, t) =
∑

k≥0

uk, mac(s,g, t)

zk+1
· (1.30)

Unlike Smac, Rmac does depend, linearly, on the parameters t.

The parameters s are determined by solving the equations

∂Wmac

∂si

(

s = s∗
)

= 0 . (1.31)

These equations have in general several solutions, that are in one-to-one correspondence

with the quantum vacua of fixed rank r. The on-shell generating functions

S∗
mac(z;g, t) = Smac(z; s∗,g) , (1.32)

R∗
mac(z;g, t) = Rmac(z; s∗,g, t) , (1.33)

are conjectured to coincide with the corresponding gauge theory observables,

S(z;g, t) = S∗
mac(z;g, t) , (1.34)

R(z;g, t) = R∗
mac(z;g, t) . (1.35)

Of course both S∗
mac and R∗

mac depend non-linearly on t because s∗ gets a non-trivial

t-dependence upon solving (1.31).

1.3 The microscopic formalism

In the microscopic formalism, the basic, natural variables are the operators (1.1). Their

expectation values for fixed boundary conditions at infinity ai for the field X,2

X∞ = diag(a1, . . . , aN ) = diag a , (1.36)

are given in terms of averages over the statistical ensemble of random colored partitions

endowed with a suitable generalized Plancherel measure as

uk,mic(a, t, ǫ) =
〈

a
∣

∣Tr Xk
∣

∣a
〉

ǫ
=

1

Zmic

∑

~p

µ~p
mic uk,~p , (1.37)

Zmic(a, t, ǫ) =
∑

~p

µ
~p
mic = exp

Fmic(a, t, ǫ)

ǫ2
· (1.38)

2We work in euclidean space-time.
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A colored partition ~p is a collection of N ordinary partitions pi, ~p = (p1, . . . , pN ), which

are characterized by integers pi,α satisfying

pi,1 ≥ pi,2 ≥ · · · ≥ pi,p̃i,1 > pi,p̃i,1+1 = 0 , (1.39)

p̃i,1
∑

α=1

pi,α = |pi| . (1.40)

The integer |pi| is called the size of the partition pi, and

|~p| =
N

∑

i=1

|pi| (1.41)

is the size of the colored partition ~p. To each partition pi, it is convenient to associate a

Young tableau Ypi
with pi,α boxes in the row number α (the uppermost row being the last,

shortest row). The number of boxes in the column number β is then denoted by p̃i,β (the

rightmost column being the last, shortest column). The integers p̃i,β automatically satisfy

p̃i,1 ≥ p̃i,2 ≥ · · · ≥ p̃i,pi,1 > p̃i,pi,1+1 = 0 , (1.42)
pi,1
∑

β=1

p̃i,β = |pi| . (1.43)

In (1.37) and (1.38), the “microscopic” measure is given in terms of the integers char-

acterizing the colored partition ~p and the tree-level gauge kinetic term. Explicitly, we

have

µ~p
mic =

(

ν~p
mic

)2
(1.44)

with

ν~p
mic =

1

ǫ|~p|

N
∏

i=1

[

∏

¤(α,β)∈Ypi

1

pi,α − β + p̃i,β − α + 1

∏

j 6=i

1

ai − aj + ǫ(β − α)

]

×

∏

i<j

p̃i,1
∏

α=1

pj,1
∏

β=1

(

ai − aj + ǫ(p̃j,β − α − β + 1)
)(

ai − aj + ǫ(pi,α − β − α + 1)
)

(

ai − aj + ǫ(1 − α − β)
)(

ai − aj + ǫ(p̃j,β − α + pi,α − β + 1)
) ×

exp

(

1

2ǫ2

∑

k≥1

tk
k + 1

uk+1,~p

)

(1.45)

and

uk,~p =
N

∑

i=1

[

ak
i +

p̃i,1
∑

α=1

(

(

ai + ǫ(pi,α − α + 1)
)k −

(

ai + ǫ(pi,α − α)
)k

+
(

ai − ǫα
)k −

(

ai − ǫ(α − 1)
)k

)

]

. (1.46)

The parameter ǫ can be interpreted as being the strength of some particular supergravity

background, the so-called Ω-background [3]. It is different from the supergravity back-

ground governed by the parameter ε in the macroscopic formalism. In particular, ε is

associated with a non-trivial space-time curvature whereas ǫ is not.
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Let us note that

u2,~p =
N

∑

i=1

a2
i + 2ǫ2|~p| . (1.47)

Using (1.45), (1.44) and (1.15), this implies that the dependence in the instanton factor in

the sums (1.37) and (1.38) is given by q|~p|. Thus colored partitions of size k contribute to

the kth instanton order.

From (1.37), (1.38) and (1.45), we obtain immediately a set of generalized Matone’s

relations [9], valid for any ǫ,

uk,mic(a, t, ǫ) = 2k
∂Fmic

∂tk−1

, k ≥ 2 . (1.48)

The usual Matone’s relation corresponds to k = 2, tk′ = 0 for k′ ≥ 2 and ǫ = 0. It was

shown to be valid at finite ǫ in [10].

From (1.37) we can get the generating function

Rmic(z;a, t, ǫ) =
∑

k≥0

uk, mic(a, t, ǫ)

zk+1
· (1.49)

Most relevant to us will be the limit ǫ → 0 of vanishing Ω-background

uk, mic(a, t) =
〈

a
∣

∣Tr Xk
∣

∣a
〉

= lim
ǫ→0

uk, mic(a, t, ǫ) , (1.50)

Rmic(z;a, t) = lim
ǫ→0

Rmic(z;a, t, ǫ) . (1.51)

Note the following important feature: the function Rmic does not depend on the parameters

g that enter the tree-level lagrangian (1.5).

The next step is to introduce the microscopic quantum superpotential Wmic [1]. In

terms of the “microscopic” one-form

λmic = zRmic(z;a, t) dz , (1.52)

it is given by

Wmic(a,g, t) =
〈

a
∣

∣Tr W (X)
∣

∣a
〉

=
1

2iπ

∮

α

Wλmic

z
· (1.53)

The expectation values of the operators (1.2) are given by

v0, mic(a,g, t) =
∂Wmic

∂λ−1

,

vk, mic(a,g, t) = k
∂Wmic

∂λk−1
for k ≥ 1 ,

(1.54)

or equivalently by

vk, mic(a,g, t) =
N

k + 1

∂Wmic

∂tk+1
· (1.55)

The associated generating function is

Smic(z;a,g, t) =
∑

k≥0

vk, mic(a,g, t)

zk+1
· (1.56)
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Unlike Rmic, Smic does depend, linearly, on the parameters g.

The parameters a are determined by solving the equations

∂Wmic

∂ai

(

a = a∗
)

= 0 . (1.57)

These equations have in general several solutions, that are in one-to-one correspondence

with the full set of quantum vacua of the theory [1]. This is in sharp contrast with the

equations (1.31), that yield the vacua for fixed values of the rank r only. The on-shell

generating functions

R∗
mic(z;g, t) = Rmic(z;a∗, t) , (1.58)

S∗
mic(z;g, t) = Smic(z;a∗,g, t) , (1.59)

are equal to the the corresponding gauge theory observables,

R(z;g, t) = R∗
mic(z;g, t) , (1.60)

S(z;g, t) = S∗
mic(z;g, t) . (1.61)

Of course, both functions R∗
mic and S∗

mic have a complicated non-linear dependence on g

that comes from solving (1.57).

1.4 Outline of the paper

The two formalisms described above have a very similar structure, with each statement in

a given framework corresponding to another statement in the other framework. There is

an obvious parallel between (1.18) and (1.37), (1.19) and (1.38), (1.24) and (1.49), (1.28)

and (1.53), (1.31) and (1.57). We have indicated in each row of table 1 quantities that

play analogous rôles in the two formalisms. This mapping will be justified and made more

precise in the following sections. Similar but much more detailed tables are given at the

end of the paper.

The formal structural similarities between the formalisms should not hide the fact that

the macroscopic and microscopic approaches are both technically and conceptually very

different. Clearly the matrix model integrals at the basis of the macroscopic formalism

and the sums over colored partitions at the basis of the microscopic formalism are totally

different objects. A very important point is that the microscopic formalism is an approach

from first principles. The equations (1.60) and (1.61) must be true by construction. This

is unlike their conjectured macroscopic analogues (1.35) and (1.34).

Our aim in the following will be to prove the equivalence between the two formalisms,

which can be summarized mathematically by the two fundamental equations

R∗
mac(z;g, t) = R∗

mic(z;g, t)

S∗
mac(z;g, t) = S∗

mic(z;g, t)
(1.62)

which must be valid in all the vacua of the theory. These equations are remarkable math-

ematical identities that make the link between two seemingly unrelated starting points to
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Macroscopic formalism Microscopic formalism

Glueballs s Scalars a

Hermitian matrix M Colored partition ~p

Curved background ε Ω-background ǫ

Superpotential couplings g Prepotential couplings t

Matrix model partition function

Fmac
Prepotential Fmic

Macroscopic superpotential

Wmac(s,g, t)

Microscopic superpotential

Wmic(a,g, t)

Smac(z; s,g) dz zRmic(z;a, t) dz

Rmac(z; s,g, t) dz S′
mic(z;a,g, t) dz

Table 1: Formal mapping between the macroscopic and microscopic formalisms.

perform the calculations. On the physics side, the two completely different-looking albeit

equivalent formulations correspond to the open string (the microscopic set-up) and the

closed string (the macroscopic set-up) descriptions of the same gauge theory.

The paper is organized as follows. In section 2, we discuss in details the macroscopic

formalism. We establish the equivalence between the matrix model formulas (1.18), (1.19)

and the generalized Konishi anomaly equations for our extended N = 1 theory (1.5). We

compute explicitly the functions Smac(z; s,g) and Rmac(z; s,g, t) from (1.18) and (1.29).

We then study the critical points of Wmac, solving (1.31) in full generality. The result

yields explicit expressions for S∗
mac and R∗

mac. In section 3, we focus on the microscopic

formalism. Using results from Marshakov and Nekrasov [6] and the strategy developed

in [1, 2], we compute explicitly Rmic(z;a, t) and Smic(z;a,g, t). It turns out that Smic(z)

is an infinitely multi-valued analytic function, whereas the other generating functions are

always two-valued. We then solve the equations (1.57), and provide a full microscopic

derivation of the anomaly equations which are at the heart of the macroscopic approach.

This includes the derivation of conjectures made in [2] about the generators of the equations

and their algebra. Equations (1.62) then follow. Section 4 contains our conclusions and

future prospects. We have also included two appendices. In appendix A, we present the

proof of a generalization of the Riemann bilinear relations that plays an important rôle in

the main text. In appendix B, we illustrate the solution of the extended model (1.5) in the

particular case of the rank one vacua.

2. The macroscopic formalism

2.1 The anomaly equations, Smac and the matrix model

We start from the generalized Konishi anomaly equations for the model (1.5). We do not

try to justify these equations beyond the usual perturbative arguments [5] for the moment,
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since our point of view is to develop the macroscopic formalism in this section using the

usual hypothesis, which will be eventually proven by comparing with the results of the

microscopic approach in section 3.

We thus follow [5] and consider, in perturbation theory, the variations

δLnX = −ζXn+1 , (2.1)

δJnX =
ζ

16π2
W αWαXn+1 , (2.2)

where ζ is an infinitesimal parameter. These variations are generated by the operators

Ln = −Xn+1 δ

δX
, Jn =

1

16π2
W αWαXn+1 δ

δX
· (2.3)

They act on the observables (1.1) and (1.2) as

Ln · um = −mun+m , Jn · um = −mvn+m , Ln · vm = −mvn+m , Jn · vm = 0 (2.4)

and satisfy the algebra

[Ln, Lm] = (n − m)Ln+m , [Ln, Jm] = (n − m)Jn+m , [Jn, Jm] = 0 . (2.5)

The last equation in (2.4) is a consequence of the anticommuting nature of the chiral vector

superfield W α in the chiral ring at the perturbative level. We refer the reader to [5] for

details.

Performing the changes of variables corresponding to the variations (2.1) and (2.2) in

the gauge theory path integral yield the following two equations

−NW ′(z)Rmac(z) − NV ′(z)Smac(z) + 2Rmac(z)Smac(z) + N2∆R(z) = 0 , (2.6)

−NW ′(z)Smac(z) + Smac(z)2 + N2∆S(z) = 0 . (2.7)

The polynomial terms N2∆R and N2∆S are necessary to make the equations consistent

with the asymptotics

Smac(z) ∼
z→∞

v0, mac

z
, Rmac(z) ∼

z→∞

N

z
(2.8)

that follow from the definitions (1.24) and (1.30). The first two terms in the left hand

side of (2.6) come from the variation of the tree-level superpotential (1.8). The first term

in (2.7) has the same origin. Note however that the polynomial V does not contribute

to (2.7) because Jn · vm = 0. The terms 2RmacSmac and S2
mac are generated by one-loop

anomalous jacobians in the path integral, in strict parallel with the usual one-loop Konishi

anomaly [11].

In the perturbative framework where (2.6) and (2.7) are derived, the variables uk, mac

and vk ,mac must satisfy algebraic constraints that follow from their definitions in terms of

a finite-size N × N matrix X. For example, there exists polynomials Ppert, p such that

uN+p,mac = Ppert, p(u1, mac, . . . , uN, mac), p ≥ 1 . (2.9)
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Similarly, only v0,mac, . . . , vN−1, mac are independent. It is not too difficult to show

that (2.6) and (2.7) are consistent with (2.9) only if Rmac and Smac coincide with their

classical values [12]. This is an unorthodox way to rederive the standard perturbative

non-renormalization theorem for the chiral operators expectation values.

In order to carry on with the macroscopic approach, we shall use the

Non-perturbative anomaly conjecture [12, 2]: The non-perturbative corrections

to (2.6) and (2.7) are such that they can be absorbed in a non-perturbative redefinition

of the variables that enter the equations.

One of the most important contribution of our work is to give in section 3 the first direct

proof of this conjecture. For the moment we consider it as the basic assumption of the

macroscopic formalism. So we can use (2.6) and (2.7), but with relations

uN+p,mac = Pp(u1, mac, . . . , uN, mac; q, λ0, . . . , λdV
) (2.10)

that can be a priori arbitrary as long as they are consistent with the symmetries (1.16).

Let us note that the non-perturbative anomaly conjecture implies that the equa-

tions (2.4) and (2.5) must get very strong quantum corrections [2]. We refer the reader

to [12, 2] and to section 3.4 for a more extensive discussion of these conceptually very

important points.

This being said, we can use (2.7) to find Smac. Since the equation does not depend on

the polynomial V , we find that Smac does not depend on t, as was claimed in section 1.2.

Thus the function Smac is the same as in the usual N = 1 gauge theory studied in [5], and

in particular (1.18) holds (it is a direct consequence of the fact that (2.7) coincides with

the loop equation of the matrix model). Explicitly, (2.7) implies that

Smac(z; s,g) =
N

2

(

W ′(z) −
√

W ′(z)2 − 4∆S(z)
)

. (2.11)

The minus sign in front of the square root in (2.11) is found by using the asymptotics (2.8).

The function Smac(z) is a two sheeted function with r ≤ dW branch cuts. The integer dW−r

is given by the number of double roots of the polynomial W ′2 − 4∆S ,

W ′(z)2 − 4∆S(z) = NdW −r(z)2y2
mac, r , (2.12)

where NdW −r is a polynomial of degree dW − r. We see that Smac(z) is a meromorphic

function on a genus r − 1 hyperelliptic curve of the form

Cmac, r : y2
mac, r =

r
∏

i=1

(z − w−
i )(z − w+

i ) . (2.13)

This curve, with some contours used in the main text, is depicted in figure 1. The configu-

rations corresponding to a given value of r correspond to the description of the rank r vacua

of the gauge theory. This can be straightforwardly checked by studying the classical limit,

which in this formalism corresponds to s → 0. In particular, classically w−
i = w+

i = wi

satisfies W ′(wi) = 0.
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Figure 1: The curve Cmac, r defined by (2.13). On the first sheet (plain lines), the asymptotic

conditions (2.8) are valid. We have depicted the contours αi and βi used in the main text. The

contour at infinity is given by α =
∑

i αi. The open contours βi start and end at z = µ0 → ∞,

which corresponds to the points P0 and Q0 on the first and second sheets respectively.

The function Smac given by (2.11) depends a priori on the dW undetermined parameters

that enter into ∆S . The factorization condition (2.12) yields dW − r constraints, and thus

there remains r free parameters. Using the relation between Smac and the matrix model

expectation values (1.18), these r free parameters can be related to the r parameters si

defined after equation (1.22) by

si =
1

2iπN

∮

αi

λmac , (2.14)

where the meromorphic one-form λmac was defined in (1.27). Equations (2.11), (2.12)

and (2.14) thus give the full prescription to compute the generating function Smac(z; s,g).

Note that the asymptotics (2.8) implies that

s =
∑

i

si =
1

2iπN

∮

α
λmac =

v0,mac

N
, (2.15)

or equivalently

v0, mac(s,g) = v0, mac(s) = N
∑

i

si , (2.16)

which is a particularly simple formula.

The fact that Smac is single-valued on the curve (2.13) implies the following period

integrals,
∮

αi

S′
mac dz = 0 , (2.17)

∫

βi

S′
mac dz = NW ′(µ0) . (2.18)

These equations will have non-trivial counterparts in the microscopic formalism.

2.2 The glueball superpotential and Rmac

The next important ingredient in the macroscopic formalism is the glueball superpotential

given by (1.28).
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2.2.1 Consistency with the anomaly equations and Rmac

We are now going to check the g- and t-dependence of Wmac by showing that the equations

v0, mac(s,g) =
∂Wmac

∂λ−1

,

vk, mac(s,g) = k
∂Wmac

∂λk−1
for k ≥ 1

(2.19)

and (1.29) are consistent with the anomaly equations (2.6) and (2.7). This is a generaliza-

tion of the analysis made when λk = 0 for all k ≥ 0 in [5].

The equations (2.19) are actually trivially satisfied. Indeed, all the dependence in λ,

or equivalently in t, comes from the term containing V in (1.28). Using the fact that

λmac does not depend on t, we see that this term is precisely designed to be consistent

with (2.19).

Checking the consistency of (1.29) is more interesting. Let us introduce the loop

insertion operator

Lmac(z) = −
∑

k≥1

k

zk+1

∂

∂gk−1
· (2.20)

Equations (1.23) and (1.29) are equivalent to

Smac(z) =
v0, mac

z
+ NLmac(z) · Fmac , (2.21)

Rmac(z) =
N

z
− Lmac(z) · Wmac . (2.22)

Applying the operator Lmac(z) on (1.28) and using the above two equations together

with (2.16) then yields

Rmac(z) =
1

N

r
∑

i=1

Ni
∂Smac(z)

∂si
− 1

2iπ

∮

α
Lmac(z) · Smac(z

′)V (z′) dz′ . (2.23)

This formula can be written in a more elegant way. Let us introduce a canonical basis

{hi}1≤i≤r of meromorphic one-forms on Cmac, r, satisfying

1

2iπ

∮

αj

hi = δij , (2.24)

that are holomorphic everywhere except at the points at infinity where they may have a

simple pole. Explicitly, these forms can be written as

hi = ψi(z) dz =
pi

ymac, r
dz , (2.25)

where the pi(z) = zr−1 + · · · are monic polynomials of degree r − 1 fixed by the condi-

tions (2.24). Note that these conditions ensure that the {pi}1≤i≤r form a basis of the vector

space of polynomials of degree at most r − 1. By using the explicit expression (2.11) for

Smac, we get
∂Smac(z)

∂si
=

N∂∆S(z)/∂si
√

W ′(z)2 − 4∆S(z)
· (2.26)
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Taking the derivative of the factorization condition (2.12), we see that the roots of NdW −r

must also be roots of the polynomial ∂∆S(z)/∂si, and thus ∂Smac(z)/∂si must be a lin-

ear combination of the functions ψi appearing in (2.25). Actually, taking the derivative

of (2.14) with respect to sj, and comparing with (2.24), we find that

∂Smac(z)

∂si
= Nψi(z) . (2.27)

In terms of (1.27), this is equivalent to

∂λmac

∂si
= Nhi . (2.28)

Equation (2.27) allows to write the first term in the right hand side of (2.23) in a suggestive

way.

Let us now express Lmac(z) · Smac(z
′), by taking the derivative of (1.18) with respect

to the couplings g using (1.20). We find

Lmac(z) · Smac(z
′) =

N

ε2

(

〈〈

s

∣

∣

∣
εTr

1

z − X
εTr

1

z′ − X

∣

∣

∣
s
〉〉

ε

−
〈〈

s

∣

∣

∣
εTr

1

z − X

∣

∣

∣
s
〉〉

ε

〈〈

s

∣

∣

∣
εTr

1

z′ − X

∣

∣

∣
s
〉〉

ε

)

. (2.29)

The first term in (2.29) comes from the derivative of the numerator in (1.18), and the

second term comes from the derivative of the partition function Zmac in the denumerator.

We have factored out explicitly 1/ε2 to emphasize the fact that in the planar ε → 0 limit,

it is the combination εTr that has a finite limit. In particular, the right hand side of (2.29)

gets contributions from genus one, non-planar diagrams in the matrix model Feynman

graph expansion. Plugging (2.29) and (2.27) in (2.23), we find the basic formula for Rmac

in the macroscopic formalism,

Rmac(z; s,g, t) =

r
∑

i=1

Niψi(z) − N

ε2

(

〈〈

s

∣

∣

∣
εTr

1

z − X
εTr V (X)

∣

∣

∣
s
〉〉

ε

−
〈〈

s

∣

∣

∣
εTr

1

z − X

∣

∣

∣
s
〉〉

ε

〈〈

s

∣

∣

∣
εTr V (X)

∣

∣

∣
s
〉〉

ε

)

, (2.30)

where the limit ε → 0 is understood. Let us note that the constant term in V does not

contribute to (2.30), and thus in the usual gauge theory with field-independent tree-level

gauge coupling we have the much simpler formula Rmac =
∑

i Niψi. Turning on non-

constant terms in V makes non-planar contributions to the matrix model relevant.

Equation (2.30) is conceptually interesting, but in order to compare with the anomaly

equation (2.6) we need a more concrete formula. We can actually evaluate the integral in

the right hand side of (2.23) more explicitly. We need to use the identity

Lmac(z) · Smac(z
′) = Lmac(z

′) · Smac(z) , (2.31)
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which follows either from (2.21) and [Lmac(z),Lmac(z
′)] = 0, or from the explicit expres-

sion (2.29). The expansions (2.20) and (1.9) then yield

1

2iπ

∮

α
Lmac(z) · Smac(z

′)V (z′) dz′ =
1

2iπ

∮

α
Lmac(z

′)V (z′) dz′ · Smac(z)

= −
∑

k≥0

λk
∂Smac(z)

∂gk

,
(2.32)

which implies that

Rmac(z; s,g, t) =

r
∑

i=1

Niψi(z) +
∑

k≥0

λk
∂Smac(z; s,g)

∂gk
· (2.33)

The derivatives ∂Smac(z)/∂gk can be computed from (2.11) in parallel with our previous

computation of the derivatives ∂Smac(z)/∂si in (2.27) and above. Plugging the result

in (2.33), and also using the explicit form of the ψi given in (2.25), we find that

Rmac(z; s,g, t) =
N

2

(

V ′(z) +
DR(z)

ymac, r

)

, (2.34)

where Dr(z) is a polynomial of degree dV + r = deg V ′ + r. Its coefficients are determined

by the asymptotics (2.8), which yields dV + 2 constraints, and by the conditions

1

2iπ

∮

αi

Rmac dz = Ni , (2.35)

which yield r additional constraints, only r−1 of which are independent from the previous

ones because
∑

i Ni = N . The period integrals (2.35) follow for example from (2.33)

and (2.14).

We can now easily compare this result with the prediction from the anomaly equations.

Using the solution to (2.7) in (2.6), we find

Rmac(z; s,g, t) =
N

2

(

V ′(z) +
2∆R(z) − W ′(z)V ′(z)
√

W ′(z)2 − 4∆S(z)

)

. (2.36)

The anomaly equations do not put constraints on ∆R, and thus Rmac in (2.36) has gener-

ically dW branch cuts, each corresponding to a critical point of W . To describe vacua

which classically correspond to having Ni eigenvalues of X sitting at the ith critical point,

we need to impose the constraints (2.35), now for 1 ≤ i ≤ dW . When only r of the Ni are

non-zero, the factorization (2.12) must take place, and the would-be poles of Rmac(z) at

the roots of NdW −r(z) must vanish (otherwise the corresponding Nj would be non-zero).

The formula (2.36) then reduces to (2.34), as was to be shown.

Let us emphasize that (2.35) is non-trivial at the quantum level [12]. Indeed, there are

many a priori consistent forms for the relations (2.10) that would violate the quantization

conditions (2.35). The non-trivial statement is that the quantization conditions must be

satisfied at the quantum level for the particular relations (2.10) for which the anomaly

equations take the simple forms (2.6) and (2.7) (see the non-perturbative anomaly con-

jecture on page 12). In the way we have presented it, these constraints (2.35) look like

additional inputs that are logically independent from the anomaly equations themselves.

Remarkably, this is not the case [12, 13], see the discussion at the beginning of section 2.3.
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2.2.2 Consistency with the U(1)R symmetry

A useful consistency condition on Wmac comes from the U(1)R symmetry in (1.16) [14],

Wmac(s,g, t) =
∑

k≥0

gk
∂Wmac

∂gk
+

r
∑

i=1

si
∂Wmac

∂si

=
1

2iπ

∮

α
RmacW dz +

r
∑

i=1

si
∂Wmac

∂si
·

(2.37)

Comparing with (1.28), we see that this a non-trivial formula in our formalism. We are

going to present a first derivation based on matrix model identities along the lines of section

4.2.1 of [14]. Another derivation will be presented in section 2.3.3.

We start from the definition

Nε
〈〈

s
∣

∣Tr V (X)
∣

∣s
〉〉

ε
=

1

2iπ

∮

α
V λmac =

Nε

Zmac

∫

dµM
mac Tr V (M) , (2.38)

and we perform the infinitesimal variations

δsi = ζsi , δε = ζε . (2.39)

Taking into account the variations of the global ε factor, of the numerator and of the

denominator in the right hand side of (2.38), we obtain, in the ε → 0 limit and by us-

ing (2.28),

1

2iπ

∮

α

∑

i

siV
∂λmac

∂si
=

N

2iπ

∮

α

∑

i

siV hi = Nε
〈〈

s
∣

∣Tr V (X)
∣

∣s
〉〉

ε

+
N

ε2

(

〈〈

s
∣

∣εTr W (X) εTr V (X)
∣

∣s
〉〉

−
〈〈

s
∣

∣εTr W (X)
∣

∣s
〉〉〈〈

s
∣

∣εTr V (X)
∣

∣s
〉〉

)

. (2.40)

The same reasoning starting from (1.19) shows that [14]

∑

i

si
∂Fmac

∂si
− 2Fmac =

1

2iπN

∮

α
Wλmac . (2.41)

Taking the derivative with respect to si and using (2.27), we get

−∂Fmac

∂si
+

∑

j

sj
∂2Fmac

∂si∂sj
=

1

2iπ

∮

α
Whi . (2.42)

If we compute from the definition (1.28), we thus find

∑

i

si
∂Wmac

∂si
=

N

2iπ

∮

α

∑

i

siV hi −
∑

i,j

Njsi
∂2Fmac

∂si∂sj

=
1

2iπ

∮

α
V λmac −

∑

i

Ni
∂Fmac

∂si
− 1

2iπ

∮

α
W

∑

i

Nihi

+
N

ε2

(

〈〈

s
∣

∣εTr W (X) εTr V (x)
∣

∣s
〉〉

−
〈〈

s
∣

∣εTr W (X)
∣

∣s
〉〉〈〈

s
∣

∣εTr V (X)
∣

∣s
〉〉

)

=Wmac −
1

2iπ

∮

α
RmacW dz .

(2.43)
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To go from the first to the second equality in (2.43), we have used (2.40) and (2.42), and

to go from the second to the third identity we have used (1.28) and (2.30).

2.3 The macroscopic quantum equations of motion

In the foregoing subsections, we have obtained explicit results for the generating func-

tions Smac(z; s,g) and Rmac(z; s,g, t), see equations (2.8), (2.11), (2.12), (2.14), (2.34)

and (2.35). We are now going to compute the on-shell generating functions S∗
mac(z;g, t)

and R∗
mac(z;g, t), by solving (1.31) using the explicit formula (1.28).

2.3.1 On the consistency of the chiral ring

Before doing that, we would like to briefly discuss the following conceptually important

question: is the formula (1.28) a new axiom of the macroscopic formalism, or is it enough

to postulate the anomaly equations? We have seen in 2.2.1 that the t- and g-dependence

of Wmac is fixed by comparing with the correlators deduced from the anomaly equations.

There remains an undetermined piece of the form w(s) in Wmac. Of course, this piece

plays a crucial rôle in solving (1.31). Originally, it was thought that the precise form of

this term, which encodes a crucial part of the non-perturbative gauge dynamics, needs to be

postulated in addition to the anomaly equations themselves. Remarquably, it turns out that

this is not necessary: the full s-dependence of Wmac follows from consistency conditions

once the anomaly equations have been postulated [14, 12, 13]. The same consistency

conditions also imply that the quantization conditions (2.35) must be valid. This is a

deep feature of the macroscopic formalism. We refer the reader to [13] for an extensive

discussion, but let us briefly sketch the ideas involved.

For the vacua of rank r = 1, the argument is actually very simple [14]. In this case,

Wmac(s,g, t) depends on only one variable s, and the full s-dependence is then completely

fixed by the consistency with the U(1)R symmetry. Indeed, equation (2.37) is not invariant

if we add to Wmac an arbitrary function of s. The condition (2.35) also follows immediately

from the asymptotic behavior (2.8).

The case of the vacua of ranks r > 1 is much more interesting. One of the quantum

equations of motion (1.31) is still related to the consistency with the U(1)R symmetry, but

there remains r − 1 independent constraints. In all the cases that have been studied (and

we are going to show that this is true in the present extended model as well), they have

the form of quantization conditions for the compact periods of Rmacdz,

1

2iπ

∮

βi−βj

Rmac dz ∈ Z . (2.44)

Combined with (2.35), we see that all the periods of Rmacdz over the non-trivial cycles of

the curve Cmac, r are integers. Equivalently, the quantum characteristic function

F ∗
mac(z;g, t) =

〈

det(z − X)
〉

, (2.45)

which satisfies
F ∗′

mac(z;g, t)

F ∗
mac(z;g, t)

= R∗
mac(z;g, t) , (2.46)
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is well-defined (single-valued) on the curve Cmac, r, together with R∗
mac and S∗

mac. The main

general statement is as follows:

Chiral ring consistency conjecture [12]: The anomaly equations are consistent with

the existence of kinematical relations in the chiral ring of the form (2.10) if and only if the

quantization conditions (2.35) and (2.44) are satisfied.

Consistency is non-trivial because the relations (2.10) show that there is only a finite num-

ber of independent variables, and the anomaly equations yield an infinite set of constraints

on this finite set of variables.

We have proven the above conjecture in the case of the ordinary N = 1 theory with a

constant V and arbitrary W , including when Nf ≤ 2N flavors of fundamental quarks with

general couplings to X are added [13], and we believe that it is always true. It shows in

particular that the full s-dependence of Wmac is fixed by the algebraic consistency of the

chiral ring.

2.3.2 The equations of motion

We need the following standard relation for the matrix model partition function (see for

example [15] and references therein)

∂Fmac

∂si
=

1

N

∫

βi

λmac + 2s ln µ0 − W (µ0) . (2.47)

Using (1.28), (2.28) and (2.35), we thus obtain

∂Wmac

∂sj
=

N

2iπ

∮

α
V hj −

1

2iπ

r
∑

i=1

∮

αi

Rmac dz

∫

βi

hj − 2N lnµ0 . (2.48)

Let us introduce

Hj(P ) =

∫ P

P0

hj + ln µ0 . (2.49)

The analytic continuation Ĥj of Hj through the rth branch cut is given by3

Hj(z) + Ĥj(z) =

∫

βr

hj + 2 ln µ0 , (2.50)

which is found by integrating ψj + ψ̂j = 0 and finding the constant of integration by

looking at z → ∞. Let us now use the Riemann bilinear relation derived in appendix A

with F = Rmac and G = Hj. The formula (A.12) applies because Rmac is a well-defined

meromorphic function on Cmac, r. Using

Rmac(z) + R̂mac(z) = NV ′(z) , (2.51)

which follows from (2.36), and also (2.24), we find

∫

βj

Rmac dz − 1

2iπ

r
∑

i=1

∮

αi

Rmac dz

∫

βi

hj +
1

2iπ

∮

α
Rmac dz

∫

βr

hj =

− 1

2iπ

∮

α

[

RmacHj +
(

NV ′ − Rmac

)(

∫

βr

hj + 2 ln µ0 − Hj

)

]

, (2.52)

3See appendix A for details on the analytic continuation of functions like Hj .
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or equivalently

∫

βj

Rmac dz =
1

2iπ

r
∑

i=1

∮

αi

Rmac dz

∫

βi

hj+2N ln µ0+
1

2iπ

∮

α

(

NV ′Hj−2RmacHj

)

dz . (2.53)

An integration by part immediately yields

1

2iπ

∮

α
V ′Hj dz = − 1

2iπ

∮

α
V hj + V (µ0) . (2.54)

Using the asymptotics (2.8) and Hj(z) ∼
z→∞

ln z, we also get

1

2iπ

∮

α
RmacHj dz = N ln µ0 . (2.55)

Putting (2.48), (2.53), (2.54) and (2.55) together, we finally obtain

∂Wmac

∂si
= −

∫

βi

Rmac dz + NV (µ0) − 2N ln µ0 . (2.56)

The above formula is natural when one uses the parameters t. However, from the

physics point of view, a small refinement is needed, because t1 is not really a good param-

eter. The good parameter is the instanton factor (1.15) q = et1 , and the theory must be

invariant when t1 → t1 + 2iπ, which corresponds to a 2π shift of the ϑ angle. From (1.28),

we know that t1 enters Wmac only through a term st1 = s ln q. Thus we find that vacua

related to each other by 2π shifts of the ϑ angle are described by different macroscopic

superpotentials of the form Wmac + 2iπks, for k ∈ Z. The most general vacua are thus

obtained by looking at solutions of the equations
∫

βi

R∗
mac dz = NV (µ0) − 2N ln µ0 + 2iπZ . (2.57)

As a last remark, let us note that (2.44) follows as a special case of (2.57).

2.3.3 The U(1)R symmetry revisited

It is instructive to rederive (2.37) starting from (2.56). Using (1.28), (2.14)

and (2.47), (2.37) is equivalent to

r
∑

i=1

[
∮

αi

Rmac dz

∫

βi

Smac dz −
∮

αi

Smac dz

∫

βi

Rmac dz

]

=

N

∮

α

(

SmacV − RmacW
)

dz + 2iπN2
(

W (µ0) − sV (µ0)
)

. (2.58)

We let the reader check that this is a consequence of (A.12), with F = Smac and G = ρ

with

ρ(P ) =

∫ P

P0

Rmac dz + N ln µ0 . (2.59)

Useful formulas to perform the check are

Smac(z) + Ŝmac(z) = NW ′(z) , (2.60)
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which follows from (2.11), and

ρ(z) + ρ̂(z) = NV (z) +

∫

βr

Rmac dz − NV (µ0) + 2N ln µ0 , (2.61)

which follows by integrating (2.51). One also needs

1

2iπ

∮

α
Smacρdz = N2s ln µ0 , (2.62)

which is similar to (2.55).

2.4 The solution in the macroscopic formalism

Let us summarize our findings. The functions S∗
mac and R∗

mac are fully determined by the

constraints

−NW ′(z)R∗
mac(z) − NV ′(z)S∗

mac(z) + 2R∗
mac(z)S∗

mac(z) + N2∆R(z) = 0 ,

−NW ′(z)S∗
mac(z) + S∗

mac(z)2 + N2∆S(z) = 0

S∗
mac(z) ∼

z→∞

Ns

z
, R∗

mac(z) ∼
z→∞

N

z
,

∮

αi

R∗
mac dz ∈ 2iπZ ,

∫

βi

R∗
mac dz − NV (µ0) + 2N ln µ0 ∈ 2iπZ .

(2.63)

The first three lines in (2.63) follow from the corresponding formulas (2.6), (2.7) and (2.8)

for Rmac and Smac, while the constraints in the fourth line follow from (2.35) and (2.57).

The last equation is valid only on-shell, i.e. when Rmac = R∗
mac and Smac = S∗

mac. Note that

the asymptotics (third line) and the quantization conditions (fourth line) in (2.63) provide

enough constraints to fix the solution uniquely, up to a discrete ambiguity corresponding

to the existence of a discrete set of vacua.

The quantization conditions in (2.63) are equivalent to the fact that the quantum

characteristic function (2.45), (2.46) is single-valued on the same hyperellictic curve as

S∗
mac and R∗

mac, with the asymptotics

F ∗
mac(z) ∼

z→∞
zN , F̂ ∗

mac(z) ∼
z→∞

eNV (z)

zN
· (2.64)

The function F has in general an essential singularity at Q0. It is only in the case of the

non-extended theory, for which V is a constant, that it is a meromorphic function together

with S∗
mac and R∗

mac.

We refer the reader to appendix B, where the explicit solution for rank one vacua is

discussed.

3. The microscopic formalism

In this section, we are going to solve the model using the microscopic formalism [1].
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3.1 Marshakov-Nekrasov and Rmic

We start by computing the generating function Rmic which, in the microscopic formalism,

is the simplest object. The main property that we are going to use is that Rmic does not

depend on g,

Rmic(z;a,g, t) = Rmic(z;a, t) . (3.1)

This property, which is the analogue of the fact that Smac does not depend on t in the

macroscopic set-up, is manifest on the definition (1.37) and follows immediately from the

localization formula [16, 2]. We can thus compute Rmic in the g = 0 theory, which has

N = 2 supersymmetry. Fortunately for us, the extended N = 2 theory, for arbitrary t, has

been studied recently by Marshakov and Nekrasov in [6], and so we can just borrow the

result from them.4

The function Rmic(z) turns out to be a meromorphic function on the genus N − 1

hyperelliptic curve

Cmic : y2 =

N
∏

i=1

(x − x−
i )(x − x+

i ) . (3.2)

On Cmic, we define marked points P0 and Q0, as well as contours αi, α =
∑

i αi, βi and

δi = βi − βN is a way similar to what we have done on Cmac, r in figure 1.5 We have

Rmic(z;a, t) =
N

2

(

V ′(z) +
ER(z)

y

)

, (3.3)

where ER is a polynomial of degree N + deg V ′ = N + dV . The N + dV + 1 coefficients

in ER and the 2N branching points of the curve (3.2) are determined by the following

conditions [6]:

Rmic(z) ∼
z→∞

N

z
, (3.4)

1

2iπ

∮

αi

Rmic dz = 1 , (3.5)

∫

βi

Rmic dz = NV (µ0) − 2N ln µ0 + 2iπZ , (3.6)

ai =
1

2iπ

∮

αi

λmic . (3.7)

To write these equations, we have assumed that the curve (3.2) is not degenerate. This is

always the case for large enough |ai − aj|, and the solution is then uniquely specified for

any values of the ai by analytic continuation in the a-space. The one-form λmic is defined

in (1.52). The first constraint (3.4) yields dV + 2 conditions, the second constraint (3.5)

yields N − 1 conditions that are independent from the previous ones, and the third and

4There is an unfortunate typo in Marshakov and Nekrasov that pollutes many of their formula. The

typo first appears in their equation (3.2), where t′ should be replaced by 1
2
t′. We have corrected all their

subsequent equations accordingly.
5We use the same names for the contours on different curves. Which curve we are referring to is always

clear from the context.
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fourth constraints (3.6) and (3.7) yield N + N new conditions, for a total of 3N + dV + 1

independent conditions as needed. Let us note that the contours βi are really defined

modulo an integral linear combination of the αj , which explains the term +2iπZ in (3.6).

The difference between the macroscopic and microscopic formalisms is here manifest.

Equation (3.6) is valid off-shell, i.e. for any values of the parameters a. The analogous

equation (2.57) for Rmac is valid only on-shell, i.e. for the particular values s∗ of the

parameters s that make Wmac extremal. This is a very general feature: “simple” equations

in a given formalism, valid off-shell, correspond to “complicated” equations in the other

formalism, valid only on-shell. This is the mechanism that will allow to identify R∗
mac and

R∗
mic on the one hand and S∗

mac and S∗
mic on the other hand, in spite of the fact that the

off-shell functions have very different properties.

3.2 The generating function Smic

Let us now compute the generating function for the generalized glueball operators Smic.

This function has been studied in details in [2]. In particular, a general formula for the

vk, mic was derived (the derivation was made in the usual theory with tk = 0 for k ≥ 2, but

it actually applies without change to the case of the extended theory),

vk,mic(a,g, t, ǫ) =
N

(k + 1)(k + 2)

1

ǫ2

(

〈

a
∣

∣ Tr W (X)Tr Xk+2
∣

∣a
〉

ǫ

−
〈

a
∣

∣Tr W (X)
∣

∣a
〉

ǫ

〈

a
∣

∣Tr Xk+2
∣

∣a
〉

ǫ

)

. (3.8)

This can be conveniently rewritten in terms of Smic as

S′′
mic(z;a,g, t) =

N

ǫ2

(

〈

a

∣

∣

∣
Tr

1

z − X
Tr W (X)

∣

∣

∣
a
〉

ǫ

−
〈

a

∣

∣

∣
Tr

1

z − X

∣

∣

∣
a
〉

ǫ

〈

a

∣

∣

∣
Tr W (X)

∣

∣

∣
a
〉

ǫ

)

, (3.9)

where the ′ always means the derivative with respect to z. This formula, which is the

microscopic analogue of (2.30), will be rederived shortly.6 It shows that the subleading

terms in the small ǫ expansion contribute to the glueball operators. Another contribution

of [2] was to compute explicitly Smic up to two instantons using (3.9) and the definitions

given in 1.3. We are going to derive in the present section the exact formula for Smic, by

imitating the macroscopic derivation of Rmac in 2.2.1.

Let us start by explaining the origin of (3.9) in the present set-up. We shall need a

few simple identities. We note that (1.46) implies that u1,~p does not depend on the colored

partition ~p,

u1,~p =

N
∑

i=1

ai . (3.10)

6Note that (2.30) and (3.9) are actually valid at finite ε and ǫ respectively, even though we are only

interested in the ε → 0 and ǫ → 0 limits in the present paper.
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From this we deduce that

u1, mic(a, t) = u1, mic(a) =
N

∑

i=1

ai = a , (3.11)

which is a particularly simple formula, as well as

〈

a
∣

∣ Tr X Tr Xk
∣

∣a
〉

ǫ
=

〈

a
∣

∣ Tr X
∣

∣a
〉

ǫ

〈

a
∣

∣Tr Xk
∣

∣a
〉

ǫ
(3.12)

for any k ≥ 0. We introduce the microscopic “loop insertion operator”

Lmic(z) = −1

z

∂

∂λ−1
−

∑

k≥1

k

zk+1

∂

∂λk−1

, (3.13)

or equivalently

L
′′
mic(z) = −N

∑

k≥2

k

zk+1

∂

∂tk−1
· (3.14)

Note that the derivatives are taken at a fixed here, whereas in the similar macroscopic

operator (2.20) the derivatives are at s fixed. This point should be clear and we shall not

repeat it in the following. Using (3.11), equations (1.48) and (1.54) are then equivalent to

Rmic(z) =
N

z
+

a

z2
− 2

N
L

′′
mic(z) · Fmic , (3.15)

Smic(z) = −Lmic(z) · Wmic . (3.16)

Applying the operator Lmic(z) on (1.53) and using (3.16) then yields

Smic(z) = − 1

2iπ

∮

α
Lmic(z) · Rmic(z

′)W (z′) dz′ . (3.17)

On the other hand, if we take the derivative of (1.37) with respect to the couplings t or λ

using (1.44) and (1.45) and taking into account (3.12), we get

L
′′
mic(z) · Rmic(z

′) = −N

ǫ2

(

〈

a

∣

∣

∣
Tr

1

z − X
Tr

1

z′ − X

∣

∣

∣
a
〉

ǫ

−
〈

a

∣

∣

∣
Tr

1

z − X

∣

∣

∣
a
〉

ǫ

〈

a

∣

∣

∣
Tr

1

z′ − X

∣

∣

∣
a
〉

ǫ

)

. (3.18)

Plugging (3.18) into (3.17), we obtain (3.9).

To get a more explicit result, we use

L
′′
mic(z) · Rmic(z

′) = L
′′
mic(z

′) · Rmic(z) , (3.19)

which yields

1

2iπ

∮

α
L

′′
mic(z) · Rmic(z

′)W (z′) dz′ =
1

2iπ

∮

α
L

′′
mic(z

′)W (z′) dz′ · Rmic(z)

= −N
∑

k≥1

gk
∂Rmic(z)

∂tk
·

(3.20)
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Equation (3.17) thus implies that

S′′
mic(z;a,g, t) = N

∑

k≥1

gk
∂Rmic(z;a, t)

∂tk
· (3.21)

This important result shows that S′′
mic(z) is a meromorphic function on the curve Cmic (3.2),

since Rmic(z) and thus also its variations have this property. We can actually go one step

further. Using (3.21), the derivatives of equations (3.5) and (3.6) with respect to the tks

indeed imply that
∮

αi

S′′
mic dz = 0 ,

∮

δi

S′′
mic dz = 0 . (3.22)

This shows that

S′
mic(P ) =

∫ P

P0

S′′
mic dz (3.23)

is also a well-defined meromorphic function on Cmic, since (3.22) ensures that S′
mic(P ) does

not depend on the path chosen to perform the integral in (3.23).

Another way to see this, and to gain more information on the pole structure of S′
mic,

is to use the microscopic quantum characteristic function

Fmic(P ) =
〈

a
∣

∣det(z − X)
∣

∣a
〉

= µN
0 exp

∫ P

P0

Rmic dz . (3.24)

It is a single-valued function on Cmic thank’s to (3.5) and (3.6). It is actually holomorphic

everywhere except at the points at infinity. It has a pole of order N at P0 and an essential

singularity at Q0,

Fmic(z) ∼
z→∞

zN , F̂mic(z) ∼
z→∞

eNV (z)

zN
· (3.25)

We have used as usual the hatted notation to indicate the value of a function on the second

sheet of the hyperelliptic curve on which it is defined. Let us remark that (3.25) and (2.64)

coincide, not surprisingly, but (3.25) is valid for any a whereas (2.64) is valid only at s = s∗.

The most general form for Fmic that is compatible with the above constraints is

Fmic(z) = φ1(z) + φ2(z)y , (3.26)

for some entire functions φ1 and φ2 on the complex plane whose asymptotics can be found

from (3.25). Moreover, it is manifest from the definition (3.24) and the explicit formula (3.3)

for Rmic that Fmic can never vanish at finite z. Thus we also have

1

Fmic(z)
= ϕ1(z) + ϕ2(z)y , (3.27)

for some entire functions ϕ1 and ϕ2. Let us now consider objects of the form

fδ(z) =
δFmic

Fmic
= δ ln Fmic , (3.28)
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where δ represents the derivative with respect to a parameter, for example the tk or the ai.

Clearly fδ is a meromorphic function on Cmic, because δ ln F̂mic ∼
z→∞

NδV (z) has at most an

ordinary pole at Q0. Moreover, it follows from (3.2) that

δy =
ρδ

y
(3.29)

for some polynomial ρδ. Putting (3.26), (3.27), (3.28) and (3.29) together, we find that

fδ(z) = pδ(z) +
qδ(z)

y
· (3.30)

The entire functions pδ and qδ must actually be polynomials because fδ is meromorphic.

If we apply this remark to the primitive of (3.21), which reads

S′
mic(z;a,g, t) = N

∑

k≥1

gk
∂ ln Fmic(z;a, t)

∂tk
, (3.31)

we deduce that S′
mic must take the form

S′
mic(z) =

N

2

(

p(z) +
ES(z)

y

)

(3.32)

for some polynomials p and ES (the overall factor has been chosen for convenience). If we

now use

Rmic(z) + R̂mic(z) = NV ′(z) , (3.33)

that follows from (3.3), and (3.21), we find

S′′
mic(z) + Ŝ′′

mic(z) = NW ′′′(z) . (3.34)

Integrating, we obtain

S′
mic(z) + Ŝ′

mic(z) = NW ′′(z) + c = Np(z) . (3.35)

The constant of integration c is found to vanish by looking at the limit z = µ0 → ∞ and

using
∫

βi

S′′
mic dz = NW ′′(µ0) , (3.36)

which is a straightforward consequence of (3.21) and (3.6). Overall, we have thus obtained

S′
mic(z) =

N

2

(

W ′′(z) +
ES(z)

y

)

. (3.37)

The polynomial ES is determined in the following way. First, from the asymptotics

S′
mic(z) ∼

z→∞
−v0, mic

z2
, (3.38)

we deduce that deg ES = N + deg W ′′ = N + dW − 1. The condition (3.38) actually puts

dW + 1 constraints on the coefficients of ES , which leaves N − 1 unknown. The missing

constraints, to be derived shortly, are given by
∮

αi

S′
mic dz = 0 . (3.39)
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This is the microscopic analogue to (2.35). Equations (3.37), (3.38) and (3.39) give a full

prescription to compute exactly S′
mic, and thus all the generalized glueball operators in

the microscopic formalism. In particular, we have checked the result successfully with the

explicit calculations made in [2].

To finish, let us prove (3.39). The idea is to integrate by part and then to use (3.21)

and (1.52),
∮

αi

S′
mic dz = −

∮

αi

zS′′
mic dz = −N

∑

k≥1

gk
∂

∂tk

∮

αi

λmic . (3.40)

The result then follows by taking the derivative of (3.7) with respect to tk, which yields zero.

It is natural to ask about the δi-periods of S′
mic. Clearly, they will not vanish in general, and

thus Smic is not well-defined on the curve (3.2). Actually, it is an infinitely-many valued

function of z. This is very different from the macroscopic function Smac, which is always

two-valued because it satisfies the anomaly equation (2.7). For the equality S∗
mac = S∗

mic to

be valid, the microscopic equations of motion (1.57) must put constraints on the βi-periods

of S′
micdz. This is what we are going to study now.

3.3 The microscopic quantum equations of motion

We define, in strict parallel with what was done in section 2.2.1 for the curve (2.13), a

canonical basis of one-forms {hi}1≤i≤N on Cmic,

1

2iπ

∮

αj

hi = δij , (3.41)

holomorphic everywhere except at the points at infinity where they may have simple poles.

Explicitly,

hi = ψi dz =
pi

y
dz , (3.42)

where the pi(z) = zN−1 + · · · are monic polynomials of degree N − 1 fixed by the condi-

tions (3.41). We shall need the identity

∂λmic

∂ai
= hi − d(zψi) . (3.43)

To derive this equation, let us write

λmic = zRmic dz = − ln Fmic dz + d(z ln Fmic) . (3.44)

From (3.28) and (3.30) applied to δ = ∂/∂ai, we know that

∂ ln Fmic

∂ai
= p(z) +

q(z)

y
(3.45)

for some polynomials p and q. Integrating (3.33) with respect to z and then taking the

derivative with respect to ai, we find that necessarily p = 0. Moreover,

1

Fmic

∂Fmic

∂ai
= O(1/z) , (3.46)
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and thus deg q = N − 1. This shows that ∂ ln Fmic/∂ai is a linear combination of the ψi.

Comparing (3.41) with the derivative of (3.7) with respect to aj , we actually find

∂ ln Fmic

∂ai
= −ψi (3.47)

which, using (3.44), is equivalent to (3.43).

The definition (1.53) yields

∂Wmic

∂ai
=

1

2iπ

∮

α

W

z

∂λmic

∂ai
· (3.48)

Using (3.43) and an integration by part, we thus obtain

∂Wmic

∂ai
=

1

2iπ

∮

α
W ′hi . (3.49)

We now apply the Riemann bilinear relation (A.12) with F = S′
mic and g = hi. The

calculation is strictly similar to the one done in section 2.3.2, and thus we shall be brief.

Using (3.39), we get, using the same definition as in (2.49),

∫

βi

S′
mic dz = − 1

2iπ

∮

α

[

S′
micHi +

(

NW ′′ − S′
mic

)(

∫

βr

hi + 2 ln µ0 − Hi

)

]

= NW ′(µ0) −
N

2iπ

∮

α
W ′hi .

(3.50)

Equation (3.49) is thus equivalent to

∂Wmic

∂ai
= − 1

N

∫

βi

S′
mic dz + W ′(µ0) . (3.51)

This is exactly what the discussion at the end of 3.2 was suggesting. On-shell, we have

∫

βi

S∗′
mic dz = NW ′(µ0) . (3.52)

In particular,
∮

δi
S∗′

micdz = 0 which, together with (3.39), implies that S∗
mic is a meromorphic

function on (3.2).

It is important to note that the curve (3.2) can degenerate (and actually must always

do so if deg W ′ < N) on the solutions to (3.51). A very explicit discussion of how this

happens is given in [1]. To understand better this point, let us look in more details into

the consequences of (3.52). Since S∗
mic is two-sheeted, we can integrate (3.35) (remember

that (3.36) implies that c = 0) to get

S∗
mic(z) + Ŝ∗

mic(z) = NW ′(z) + c̃ . (3.53)

Looking at the limit z = µ0 → ∞, we obtain

∫

βi

S∗′
mic dz = NW ′(µ0) + c̃ (3.54)
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and thus the equation of motion (3.52) implies that c̃ = 0. The function S∗
mic(NW ′−S∗

mic)

is thus single-valued and meromorphic, meaning that it must be a rational function of

z. Poles for finite values of z at points where z is a good coordinate on the curve (i.e.

excluding the branching points) would yield similar poles for S∗′
mic which we know are not

present, see (3.37). Similarly, a pole of order n at a branching point yields after taking the

derivative with respect to z a pole of order n + 2 for S∗′
mic (because dy/dz ∝ 1/y). This is

impossible because (3.37) shows that S∗′
mic only has simple poles at the branching points.

Finally, this discussion implies that

S∗
mic(z)

(

NW ′(z) − S∗
mic(z)

)

= N2∆∗
S, mic(z) (3.55)

is a polynomial whose degree is fixed to be dW − 1 by the asymptotics S∗
mic = O(1/z) at

infinity. Solving this quadratic equation we find that

S∗
mic(z;g, t) =

N

2

(

W ′(z) −
√

W ′(z)2 − 4∆∗
S, mic(z)

)

. (3.56)

Consistency with the fact that S∗
mic is also defined on (3.2) implies that the following

factorization conditions must be satisfied,

y2 = MN−r(z)2y2
mic, r , (3.57)

W ′(z)2 − 4∆∗
S, mic(z) = NdW−r(z)2y2

mic, r , (3.58)

for some polynomials MN−r and NdW −r of degrees N −r and dW −r respectively. A priori,

the integer r can take any value consistent with the above equations. We see that both

S∗
mic and R∗

mic are defined on a genus r − 1 reduced curve

Cmic, r : y2
mic, r =

r
∏

i=1

(z − v−i )(z − v+
i ) (3.59)

which is obtained from (3.2) by joining some of the branch cuts. For example, if the ith

and jth branch cuts join, then the resulting cut has a β-type contour β′
i = βi = βj and

a α-type contour α′
i = αi + αj . Reshuffling the indices appropriately and renaming the

contours αi and βi on the reduced curve to match the notations used in the macroscopic

formalism, we see that (3.5) and (3.6) become
∮

αi

R∗
mic dz ∈ 2iπZ , (3.60)

∫

βi

R∗
mic dz − NV (µ0) + 2N ln µ0 ∈ 2iπZ , (3.61)

on the reduced curve. The integer appearing on the right hand side of (3.60) is simply

given by the number of cuts of the original curve Cmic that have joined to form the ith cut

of the reduced curve Cmic, r.

The link with the macroscopic formalism is almost complete. To finish the proof, we

need to show that R∗
mic and S∗

mic are related to each other consistently with the anomaly

equation (2.6) that relates R∗
mac and S∗

mac (note that (3.55) already shows that S∗
mic satisfies

an equation like (2.7)). We could do that by carefully analyzing the properties of R∗
mic and

S∗
mic, but the most elegant route is to perform a full microscopic analysis of the anomaly

equations. This is the subject of the next section.
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3.4 The microscopic derivation of the anomaly equations

At the perturbative level, the anomaly equations are generated by the operators (2.3).

Their action on the chiral operators is given by (2.4) and their algebra by (2.5). As dis-

cussed at length in [2], these operators must undergo very strong non-perturbative quantum

corrections. In particular, at the non-perturbative level, Ln ·um, Jn ·um, Ln ·vm and Jn ·vm

are not single-valued functions of the ups and vqs, and moreover the algebra generated by

Ln and Jm does not close.

In [2], it was conjectured that the non-perturbative operators are given by7

Ln = − 1

2iπ

N
∑

i=1

∮

αi

zn+1Rmic(z;a, t) dz
∂

∂ai

, (3.62)

Jn = − 1

2iπ

N
∑

i=1

∮

αi

zn+1Smic(z;a,g, t) dz
∂

∂ai
· (3.63)

The fundamental requirement is that they generate the correct anomaly polynomials

NLn · Wmic(a,g, t) = An(a,g, t) , (3.64)

NJn · Wmic(a,g, t) = Bn(a,g, t) , (3.65)

with

An = −N
∑

k≥0

gkun+k+1,mic − N
∑

k≥0

λkvn+k+1,mic + 2
∑

k1+k2=n

uk1,micvk2,mic , (3.66)

Bn = −N
∑

k≥0

gkvn+k+1,mic +
∑

k1+k2=n

vk1, micvk2, mic . (3.67)

Equivalently, in terms of the generating function we have

A (z;a,g, t) =
∑

n≥−1

An(a,g, t)

zn+2
= NL(z) · Wmic(a,g, t)

= −NW ′(z;g)Rmic(z;a, t) − NV ′(z; t)Smic(z;a,g, t)

+ 2Rmic(z;a, t)Smic(z;a,g, t) + N2∆R, mic(z;a,g, t) ,

(3.68)

B(z;a,g, t) =
∑

n≥−1

Bn(a,g, t)

zn+2
= NJ(z) · Wmic(a,g, t)

= −NW ′(z;g)Smic(z;a,g, t)

+ Smic(z;a,g, t)2 + N2∆S, mic(z;a,g, t) ,

(3.69)

for some polynomials ∆R, mic(z) and ∆S, mic(z). Equations (3.64) and (3.65) were checked

in [2] up to two instantons. Using the technology developed in the previous sections, we

can now prove these equations independently of the small q expansion.

7In [2], only the usual theory with V constant was considered, but the formulas for Ln and Jn straight-

forwardly generalize to the case of arbitrary t.
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3.4.1 The action of Ln

We use (3.62) and (3.51) to write

NLn · Wmic =
1

2iπ

∑

i

∮

αi

zn+1Rmic dz

∫

βi

S′
mic dz − NW ′(µ0)un+1,mic . (3.70)

The right-hand side of this equation can be evaluated by using the Riemann bilinear rela-

tion (A.12), with p = zn+1, F = Rmic and G = Smic. Using (3.33),

Smic(z) + Ŝmic(z) = NW ′(z) +

∫

βr

S′
mic dz − NW ′(µ0) , (3.71)

which is obtained from (3.35) in a way similar to (2.61), and (3.39) we get

NLn ·Wmic = − NW ′(µ0)un+1, mic + un+1,mic

∫

βr

S′
mic dz (3.72)

+
1

2iπ

∮

α
zn+1

[

RmicSmic+
(

NV ′−Rmic

)(

NW ′−Smic−NW ′(µ0)+

∫

βr

S′
micdz

)

]

=
1

2iπ

∮

α
zn+1

(

−NW ′Rmic − NV ′Smic + 2RmicSmic

)

dz = An .

We have thus derived the first anomaly equation (3.64).

3.4.2 The action of Jn

The definition (3.63) yields

NJn · Wmic =
1

2iπ

∑

i

∮

αi

zn+1Smic dz

∫

βi

S′
mic dz − NW ′(µ0)vn+1, mic . (3.73)

To perform the calculation, we apply the Riemann bilinear relation with F = G = Smic.

In this case, the full power of the generalized relation (A.10) derived in the appendix is

needed, because F = Smic is multi-valued on the curve (3.2) as explained at the end of

section 3.2. Because F = G, the net effect of the additional terms in (A.10) with respect

to the more conventional formula (A.12) is a crucial global factor of 2,

2 × 1

2iπ

∑

i

∮

αi

zn+1Smic dz

∫

βi

S′
mic dz = 2 × vn+1, mic

∫

βr

S′
mic dz

+
1

2iπ

∮

α
zn+1

[

S2
mic +

(

NW ′ − Smic − NW ′(µ0) +

∫

βr

S′
mic dz

)2
]

=
1

iπ

∮

α
zn+1

(

−NW ′Smic + S2
mic

)

dz + 2NW ′(µ0)vn+1,mic .

(3.74)

Plugging this result in (3.73), we obtain (3.65) as we wished, completing the full microscopic

derivation of the generalized Konishi anomaly equations.
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3.5 The solution in the microscopic formalism

When the quantum equations of motion (1.57) are satisfied, we have automatically

Ln · Wmic = 0 , Jn · Wmic = 0 , (3.75)

and thus R∗
mic and S∗

mic satisfy the anomaly equations. We can thus summarize our findings

as follows. The functions R∗
mic and S∗

mic are fully determined by the constraints

−NW ′(z)R∗
mic(z) − NV ′(z)S∗

mic(z) + 2R∗
mic(z)S∗

mic(z) + N2∆R, mic(z) = 0 ,

−NW ′(z)S∗
mic(z) + S∗

mic(z)2 + N2∆S, mic(z) = 0

R∗
mic(z) ∼

z→∞

N

z
, S∗

mic(z) ∼
z→∞

v0, mic

z
,

∮

αi

R∗
mic dz ∈ 2iπZ ,

∫

βi

R∗
mic dz − NV (µ0) + 2N ln µ0 ∈ 2iπZ .

(3.76)

The first two constraints are the anomaly equations that we have just derived. They are

valid only on-shell, which is unlike their macroscopic counterparts (2.6) and (2.7) which

are valid off-shell. The constraints in the third line of (3.76) are the usual asymptotics

that follow from the definitions of Rmic and Smic. The last constraints in the fourth line

of (3.76) correspond to (3.60) and (3.61). The solution is then fixed up to the usual discrete

ambiguity corresponding to the existence of a discrete set of vacua.

The on-shell solutions of the macroscopic formalism (2.63) and of the microscopic

formalism (3.76) are clearly identical. The fundamental result (1.62) is thus proven.

4. Conclusions

Generalizing the work of Nekrasov and collaborators [3, 6, 17] from N = 2 to N = 1,

we have provided a microscopic derivation, from first principles, of the exact results in

supersymmetric gauge theories, following the ideas explained in [1]. The main highlight is

to show that the microscopic approach based on the Nekrasov’s sums over colored partitions

and the macroscopic approach based on the Dijkgraaf-Vafa matrix model are equivalent.

A particularly interesting application is the non-perturbative derivation of the generalized

Konishi anomaly equations.

The macroscopic and microscopic formalisms have striking structural similarities. This

is illustrated in tables 2 and 3, where each equation in one formalism is associated to a

similar equation in the other formalism.

A basic property of the correspondence between the formalisms is that an off-shell,

or “kinematical” relation on one side is typically only valid on-shell, or “dynamically”

on the other side. When both sides are put on-shell, they yield equivalent results. This

is reminiscent of the electric/magnetic duality, which exchanges Bianchi identities with

equations of motion, and seems to be a common feature of many non-trivial dualities.

Actually, the duality we have been discussing is directly related to the open/closed string

duality, the open string description corresponding to the microscopic formalism and the

closed string description to the macroscopic formalism.
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Macroscopic formalism Microscopic formalism

vk, mac(s,g) = Nε
〈〈

s
∣

∣Tr Xk
∣

∣s
〉〉

uk,mic(a, t) =
〈

a
∣

∣ Tr Xk
∣

∣a
〉

λmac = Smac(z; s,g) dz λmic = zRmic(z;a, t) dz

s =
1

2iπN

∮

α
λmac a =

1

2iπ

∮

α
λmic

∂λmac

∂si
= Nhi

∂λmic

∂ai
= hi − d(zψi)

Wmac(s,g, t) =
1

2iπ

∮

α
SmacV dz

−
∑

i
Ni

∂Fmac

∂si

Wmic(a,g, t) =
1

2iπ

∮

α
RmicW dz

∑

i
si

∂Wmac

∂si
=

− 1

2iπ

∮

α
RmacW dz + Wmac

∑

i
ai

∂Wmac

∂ai
= −2v0, mic

+
1

2iπ

∮

α

(

zW ′Rmic + zV ′Smic

)

dz

uk, mac(s,g, t) = k
∂Wmac

∂gk−1
vk, mic(a,g, t) =

N

k + 1

∂Wmic

∂tk+1

vk, mac(s,g) =
N

k + 1

∂Wmac

∂tk+1
uk, mic(a, t) = k

∂Wmic

∂gk−1

vk, mac(s,g) = −Nk
∂Fmac

∂gk−1

, k ≥ 1 uk, mic(a, t) = 2k
∂Fmic

∂tk−1

, k ≥ 2

uk, mac(s,g, t) =
1

2iπ

∮

α
zk

∑

i
Nihi

− N

ε2

[

〈〈

s
∣

∣εTr Xk εTr V (X)
∣

∣s
〉〉

ε

−
〈〈

s
∣

∣εTr Xk
∣

∣s
〉〉

ε

〈〈

s
∣

∣εTr V (X)
∣

∣s
〉〉

ε

]

vk, mic(a,g, t) =
N

(k + 1)(k + 2)
×

1

ǫ2

[

〈

a
∣

∣ TrXk+2 Tr W (X)
∣

∣a
〉

ǫ

−
〈

a
∣

∣Tr Xk+2
∣

∣a
〉

ǫ

〈

a
∣

∣Tr W (X)
∣

∣a
〉

ǫ

]

Rmac(z; s,g, t) =
∑

i
Niψi(z)

+
∑

k≥0
λk

∂Smac(z; s,g)

∂gk

S′′
mic(z;a,g, t) =

N
∑

k≥1
gk

∂Rmic(z;a, t)

∂tk

1

2iπ

∮

αi

S′
mac dz = 0

1

2iπ

∮

αi

Rmic dz ∈ Z

∫

βi

S′
mac dz = NW ′(µ0)

∫

βi

Rmic dz = NV (µ0) − 2N ln µ0

Table 2: Detailed formal mapping between the macroscopic and microscopic formalisms.

There are many ways to generalize the present work. Each particular N = 1 gauge

theory, with given gauge group and matter content, can be studied along the lines of
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Macroscopic formalism Microscopic formalism

1

2iπ

∮

αi

Rmac dz ∈ Z
1

2iπ

∮

αi

S′
mic dz = 0

∂Wmac

∂si
= −

∫

βi

Rmac dz

− 2N ln µ0 + NV (µ0)

∂Wmic

∂ai
= − 1

N

∫

βi

S′
mic dz + W ′(µ0)

−NW ′Rmac − NV ′Smac + 2RmacSmac

+N2∆R = 0

NL(z) · Wmic = −NW ′Rmic

− NV ′Smic + 2RmicSmic + N2∆R, mic

−NW ′Smac + S2
mac + N2∆S = 0

NJ(z) · Wmic = −NW ′Smic

+ S2
mic + N2∆S, mic

R∗

mac = R , S∗

mac = S R∗

mic = R , S∗

mic = S

Table 3: Detailed formal mapping between the macroscopic and microscopic formalisms (follow-up

to table 2).

our work, and a nice equivalence between the associated macroscopic and microscopic

formalisms should follow.

A particularly interesting avenue of research is to consider deformations of the ordinary

gauge theories, by turning on various backgrounds. For example, we can study the theory

in a non-zero Ω-background. Many “microscopic” formulas straightforwardly generalize to

this case. In particular, the microscopic superpotential is still given by (1.53), because the

parameter ǫ is not charged under the U(1)R symmetry. The duality discussed in the present

work must generalize to the deformed theory. In particular, there should exist a deformation

of the macroscopic formalism corresponding to turning on ǫ, and the on-shell equivalence

between the formalisms should hold to any order in ǫ.8 Another interesting deformation is

the gravitational background discussed in [8], which corresponds to the non-zero parameter

ε on the macroscopic side. This deformation has not been studied yet on the microscopic

side. Understanding fully these extended dualities is likely to involve interesting physics

and mathematics. They are highly non-trivial, yet probably fully solvable, examples of

open/closed string dualities.
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A. Generalized Riemann bilinear relations

In this appendix, we derive an interesting generalization of the Riemann bilinear relations

that we have used again and again in the main text.

We consider a hyperelliptic curve

C : y2 =

r
∏

i=1

(z − z−i )(z − z+
i ) (A.1)

with two marked points P0 and Q0 corresponding to z = ∞. This curve, which can

be conveniently represented as a polygon with suitable identifications on the boundary, is

depicted in figure 2. The contours αi can be chosen to encircle the branch cuts [z−i , z+
i ], and

the contours βi join P0 to Q0 by going through [z−i , z+
i ]. The contours δi are then defined by

δi = βi−βr for 1 ≤ i ≤ r−1, and we note α =
∑

i αi the contour at infinity. It is convenient

to introduce a regulator µ0. In formulas containing µ0, it is always understood that the

points P0 and Q0 correspond to (y = µr
0, z = µ0) and (y = −µr

0, z = µ0) respectively and

that the limit µ0 → ∞ must be taken. If h is a meromorphic function on C, we denote by

h(z) its value on the first sheet (which we choose to be the sheet containing P0) and ĥ(z)

its value on the second sheet.

We consider two meromorphic functions f and g on C that are holomorphic everywhere

except at the points at infinity where they may have poles of arbitrary order (our discussion

can be straightforwardly generalized when poles at finite z are present, but this is not

needed for the applications in the main text). Let us first assume that
∮

αi

f dz = 0 ,

∮

δi

f dz = 0 . (A.2)

Let us choose a base point O on C, distinct from P0 or Q0. A primitive F of f is defined

by

F (P ) =

∫ P

O
f dz . (A.3)

The conditions (A.2) ensure that F (P ) does not depend on the path from O to P chosen

to perform the integral in (A.3). This means that F is single-valued on the curve C. In

particular, we can talk about the values F (z) and F̂ (z). It is actually a meromorphic

function on C \ {P0, Q0}. If fdz has a non-zero residue f0 at P0 (and thus also a non-zero

residue −f0 at Q0), then F has a logarithmic branch cut running from P0 to Q0 across

which it jumps by 2iπf0. We shall always choose this branch cut to go along the contour βr.

Let us now waive the hypothesis (A.2). The function F is then no longer single-valued

on C and we need to specify the contour from O to P in (A.3). We shall always choose this

contour to lie entirely in the interior of the polygon of figure 2, never going to the boundary.

If z is fixed, F can then take two values F (z) and F̂ (z) in the polygon, modulo the 2iπf0
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Figure 2: The representation of the surface (A.1) as a 4(r−1)-gon with suitable identifications on

the boundary. We have depicted the contours αi, δi = βi − βr, βr and γ, as well as the two marked

points at infinity P0 and Q0.

ambiguity due to the possible logarithmic cut. In the description involving the two sheets

of the curve (A.1), F (z) correspond to the value obtained by doing the integral (A.3)

following a contour that never circles around a branch cut [z−i , z+
i ], whereas the value F̂ (z)

is obtained by doing the analytic continuation following straight a path that goes through

the same branch cut as βr.

Let us also define the primitive G of g by

G(P ) =

∫ P

O
g dz , (A.4)

following exactly the same procedure as for F . We then consider the integral

I =

∮

γ
pFGdz , (A.5)

where p(z) is an arbitrary polynomial and the contour γ is defined in figure 2. We could

of course absorb the polynomial p by redefining F or G, but it is convenient to present the

results in this form for our purposes. Let us emphasize that we do not assume that relations

like (A.2) hold for f or for g. We are going to compute this integral in two different ways,

and this will yield the generalization of the Riemann bilinear relations that we are seeking.

Let us first deform the contour γ so that it merges with the boundary of the polygon.

If the function FG were single valued on the curve C, we would automatically find zero
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Figure 3: Decomposition of the contour γ = γ1 + αP0
+ γ2 + αQ0

. The contours αP0
and αQ0

are

small circles around the points at infinity. The contours γ1 and γ2 go along the regularized contour

βr, joining the points z = µ0 on the first and second sheets of the curve C.

due to the cancellation between the terms coresponding to the integral over αi and then

α−1
i , and over δi and then δ−1

i . However, to go from the contour αi to the contour α−1
i ,

we have to follow δi, which induces a discontinuity
∮

δi
fdz for F and

∮

δi
gdz for G. The

same phenomenon occurs when we go from the contour δi to δ−1
i : following α−1

i , we pick

discontinuities −
∮

αi
fdz and −

∮

αi
gdz for F and G respectively. Overall we thus obtain

I =

r−1
∑

i=1

[
∮

αi

(

pFG − p
(

F +

∮

δi

fdu
)(

G +

∮

δi

gdu
)

)

dz

+

∮

δi

(

pFG − p
(

F −
∮

αi

fdu
)(

G −
∮

αi

gdu
)

)

dz

]

=
r−1
∑

i=1

[
∮

δi

pFdz

∮

αi

gdz +

∮

δi

pGdz

∮

αi

fdz

−
∮

δi

gdz

∮

αi

pFdz −
∮

δi

fdz

∮

αi

pGdz

]

.

(A.6)

Using δi = βi − βr and α =
∑

i αi, we can rewrite the above formula as

I =

r
∑

i=1

[
∫

βi

pFdz

∮

αi

gdz +

∫

βi

pGdz

∮

αi

fdz −
∫

βi

gdz

∮

αi

pFdz −
∫

βi

fdz

∮

αi

pGdz

]

−
∫

βr

pFdz

∮

α
gdz −

∫

βr

pGdz

∮

α
fdz +

∫

βr

gdz

∮

α
pFdz +

∫

βr

fdz

∮

α
pGdz .

(A.7)

A second way to compute I is to deform the contour γ so that it encircles the log-

arithmic branch cut from P0 to Q0. We actually decompose γ = γ1 + αP0 + γ2 + αQ0 as

indicated in figure 3. The discontinuity across the logarithmic cut is given by the residues

f0 and g0 of fdz and gdz at P0 in such a way that

∫

γ1+γ2

pFGdz =

∫

βr

p
(

FG − (F − 2iπf0)(G − 2iπg0)
)

dz . (A.8)

Using the fact that the residues at infinity are given by minus the integral of the corre-

sponding forms over α =
∑

i αi, we thus obtain

I = −
∮

α
g dz

∫

βr

pF dz −
∮

α
f dz

∫

βr

pGdz +

∮

αP0
+βP0

pFGdz . (A.9)
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Putting (A.7) and (A.9) together, we find the fundamental formula

r
∑

i=1

[
∫

βi

pFdz

∮

αi

g dz +

∫

βi

pGdz

∮

αi

fdz −
∫

βi

g dz

∮

αi

pFdz −
∫

βi

fdz

∮

αi

pGdz

]

+

∫

βr

g dz

∮

α
pFdz +

∫

βr

fdz

∮

α
pGdz =

∮

αP0
+βP0

pFGdz .

(A.10)

The right-hand side of (A.10) is often conveniently rewritten in terms of the analytic

continuations F̂ and Ĝ as
∮

αP0
+βP0

pFGdz = −
∮

α
p(FG + F̂ Ĝ)dz . (A.11)

A relation more akin to the standard Riemann bilinear relations is found when F is

single-valued on C, i.e. when (A.2) is satisfied. Equation (A.10) then reduces to

r
∑

i=1

[
∫

βi

pFdz

∮

αi

g dz−
∫

βi

g dz

∮

αi

pFdz

]

+

∫

βr

g dz

∮

α
pFdz = −

∮

α
p(FG+F̂ Ĝ)dz . (A.12)

This latter formula can be deduced straightforwardly from the Riemann bilinear relations

found in textbooks.

B. The solution in the rank one case

In this appendix, we discuss the explicit solution of the extended theory in the special case

corresponding to

W (z) =
1

2
mz2 , V (z) = λ−1 + λ0z +

1

2
λ1z

2 . (B.1)

In the usual case, for which λ1 = λ0 = 0, the theory has N confining vacua, the N -fold

degeneracy corresponding to chiral symmetry breaking. When λ0 and λ1 are turned on,

we are going to find generalizations of these vacua as well as new purely quantum solutions

that go to infinity in the classical limit.

The generating functions (1.3) and (1.4) are given by

R(z) =
N

2

[

λ0 + λ1z +
2 + 2sλ1/m − λ0z − λ1z

2

√

z2 − 4s/m

]

, (B.2)

S(z) =
Nm

2

[

z −
√

z2 − 4s/m
]

. (B.3)

The variable s, which coincides with the gluino condensate, is given by the equation

∫

β1

R dz = NV (µ0) − 2N ln µ0 + 2iπk = N

∫ µ0

2
√

s/m

λ1z
2 + λ0z − 2sλ1/m − 2

√

z2 − 4s/m
· (B.4)

In terms of the instanton factor (1.15), this is equivalent to

q =
( s

m

)N
e−Nλ1s/m. (B.5)
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Let us study the solutions to (B.5) when λ1 is small. First, there are the usual N

solutions with small corrections,

s = me2iπk/Nq1/N
(

1 + λ1e
2iπk/Nq1/N + O

(

λ2
1

)

)

, 0 ≤ k ≤ N − 1 . (B.6)

More interestingly, there is also an infinite set of solutions that have very large values of s,

of the form

s ≃ − m

Nλ1

(

ln
(

λN
1 q

)

+ 2iπk
)

, k ∈ Z . (B.7)

In terms of the Yang-Mills coupling constant gYM and theta angle ϑ, this takes the sug-

gestive form

s ≃ m

Nλ1

(

8π2

g2
YM

− iϑ − ln λN
1

)

. (B.8)
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